Convergence of Discrete Approximations for Constrained Minimization
نویسنده
چکیده
If a constrained minimization problem, under Lipschitz or uniformly continuous hypotheses on the functions, has a strict local minimum, then a small perturbation of the functions leads to a minimum of the perturbed problem, close to the unperturbed minimum. Conditions are given for the perturbed minimum point to be a Lipschitz function of a perturbation parameter. This is used to study convergence rate for a problem of continuous programming, when the variable is approximated by step-functions. Similar conclusions apply to computation of optimal control problems, approximating the control function by step-functions.
منابع مشابه
Simulated Annealing with Asymptotic Convergence for Nonlinear Constrained Global Optimization ? 1 Problem Deenition
In this paper, we present constrained simulated annealing (CSA), a global minimization algorithm that converges to constrained global minima with probability one, for solving nonlinear discrete non-convex constrained minimization problems. The algorithm is based on the necessary and suucient condition for constrained local minima in the theory of discrete Lagrange multipliers we developed earli...
متن کاملSimulated Annealing with Asymptotic Convergence for Nonlinear Constrained Global Optimization
In this paper, we present constrained simulated annealing (CSA), a global minimization algorithm that converges to constrained global minima with probability one, for solving nonlinear discrete nonconvex constrained minimization problems. The algorithm is based on the necessary and sufficient condition for constrained local minima in the theory of discrete Lagrange multipliers we developed earl...
متن کاملA particle swarm optimization algorithm for minimization analysis of cost-sensitive attack graphs
To prevent an exploit, the security analyst must implement a suitable countermeasure. In this paper, we consider cost-sensitive attack graphs (CAGs) for network vulnerability analysis. In these attack graphs, a weight is assigned to each countermeasure to represent the cost of its implementation. There may be multiple countermeasures with different weights for preventing a single exploit. Also,...
متن کاملA Trust Region and Affine Scaling Method for Nonlinearly Constrained Minimization
Abstract. A nonlinearly constrained minimization problem can be solved by the exact penalty approach involving nondifferentiable functions and max 0 . In this paper, a trust region approach based on a 2-norm subproblem is proposed for solving a nonlinear 1 problem. The (quadratic) approximation and the trust region subproblem are defined using affine scaling techniques. Explicit sufficient decr...
متن کاملL-minimization Methods for Hamilton-jacobi Equations: the One-dimensional Case
The goal of the present paper is to investigate the approximation properties of a new class of L-minimization techniques for approximating stationary HamiltonJacobi equations in one space dimension. Most approximation algorithms of Hamilton-Jacobi equations are based on monotonicity and Lax-Friedrichs approximate Hamiltonians, see e.g. Kao, Osher, and Tsai [13]. Monotonicity is very often invok...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004